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Abstract
Solitons, nonlinear self-trapped wavepackets, have been extensively studied in many and diverse
branches of physics such as optics, plasmas, condensed matter physics, fluid mechanics, particle
physics and even astrophysics. Interestingly, over the past two decades, the field of solitons and related
nonlinear phenomena has been substantially advanced and enriched by research and discoveries in
nonlinear optics. While optical solitons have been vigorously investigated in both spatial and temporal
domains, it is now fair to say that much soliton research has been mainly driven by the work on optical
spatial solitons. This is partly due to the fact that although temporal solitons as realized in fiber optic
systems are fundamentally one-dimensional entities, the high dimensionality associated with their
spatial counterparts has opened up altogether new scientific possibilities in soliton research. Another
reason is related to the response time of the nonlinearity. Unlike temporal optical solitons, spatial
solitons have been realized by employing a variety of noninstantaneous nonlinearities, ranging from
the nonlinearities in photorefractive materials and liquid crystals to the nonlinearities mediated by the
thermal effect, thermophoresis and the gradient force in colloidal suspensions. Such a diversity of
nonlinear effects has given rise to numerous soliton phenomena that could otherwise not be
envisioned, because for decades scientists were of the mindset that solitons must strictly be the exact
solutions of the cubic nonlinear Schrödinger equation as established for ideal Kerr nonlinear media.
As such, the discoveries of optical spatial solitons in different systems and associated new phenomena
have stimulated broad interest in soliton research. In particular, the study of incoherent solitons and
discrete spatial solitons in optical periodic media not only led to advances in our understanding of
fundamental processes in nonlinear optics and photonics, but also had a very important impact on a
variety of other disciplines in nonlinear science. In this paper, we provide a brief overview of optical
spatial solitons. This review will cover a variety of issues pertaining to self-trapped waves supported
by different types of nonlinearities, as well as various families of spatial solitons such as optical lattice
solitons and surface solitons. Recent developments in the area of optical spatial solitons, such as 3D
light bullets, subwavelength solitons, self-trapping in soft condensed matter and spatial solitons in
systems with parity–time symmetry will also be discussed briefly.

(Some figures may appear in colour only in the online journal)
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1. Introduction to optical spatial solitons

Optical spatial solitons (self-trapped optical beams) have been
the subject of intense research in nonlinear optics, particularly
over the past two decades. In this section, we give a
brief introduction to the history and properties of optical
spatial solitons. Other aspects associated with some of their
fascinating characteristics will also be discussed.

1.1. Optical spatial solitons

Solitons are localized wave entities that can propagate in
nonlinear media while maintaining a constant shape. They
ubiquitously occur in many branches of physics including
hydrodynamics, plasma physics, nonlinear optics and Bose–
Einstein condensates. In optics, an optical wavepacket (a
pulse or a beam) has a natural tendency to spread as it
propagates in a medium, either due to chromatic dispersion
or as a result of spatial diffraction. Most often, when this
natural broadening is eliminated through a nonlinear process,
a stable self-localized wavepacket forms. Such a self-trapped
wavepacket, whether in time or space or both, is known as
an optical soliton. Optical spatial solitons are self-trapped
optical beams that propagate in a nonlinear medium without
diffraction, i.e. their beam diameter remains invariant during
propagation [1, 2]. Intuitively, a spatial soliton represents an
exact balance between diffraction and nonlinearly induced self-
lensing or self-focusing effects. It can also be viewed as an
optical beam that induces a waveguide that, in turn, guides
itself throughout propagation as if it were confined in an optical
fiber. A top-view photograph showing the sharp transition
between nonlinear self-trapping and linear diffraction for an
optical beam propagating through a photorefractive crystal
is displayed in figure 1, where the self-trapped optical beam
represents a typical example of a two-dimensional (2D) optical
spatial soliton. Likewise, in a way fully analogous to the spatial
case, optical temporal solitons are non-spreading optical
pulses formed when the group velocity dispersion is totally
counteracted by nonlinear self-phase modulation effects [3, 4].

Over the years, there has been some debate on the use of
the word ‘soliton’ in actual physical settings. Historically, the
notion ‘soliton’ emerged from mathematics and was strictly
reserved for optical self-trapped wavepackets that happen to
obey integrable nonlinear partial differential equations. In

Figure 1. Experimental demonstration of an optical spatial soliton
propagating through a 5 mm long nonlinear photorefractive crystal.
Top: side-view of the soliton beam from scattered light; bottom:
normal diffraction of the same beam when the nonlinearity is
‘turned off’ [28, 29]. Reproduced with permission from [29].
Copyright 1996 The Optical Society.

nonlinear optics, the so-called nonlinear Schrödinger equation
(NLSE) represents such an example. The one-dimensional
(1D) NLSE that governs wave propagation in ideal Kerr
nonlinear media can be fully solved (or integrated) using the
‘inverse scattering theory’ [5, 6], leading to soliton solutions,
which remain invariant even after a collision event. In reality,
however, most nonlinear physical systems of importance
involve non-Kerr or other types of nonlinearity and hence
are described by non-integrable evolution equations. Initially,
self-trapped entities in non-integrable systems were referred to
as ‘solitary waves’ in order to distinguish the interaction and
collision properties of these waves from those associated with
perfect ‘solitons’ in integrable systems. Yet given that in many
cases ‘solitary waves’ display behavior akin to actual solitons,
this nomenclature distinction is no longer used in today’s
literature. Thus, all self-trapped beams are now loosely called
optical spatial solitons, regardless of the actual nonlinearity
used to form them.

1.2. How did optical spatial solitons emerge into optics?

The idea that an optical beam can induce a waveguide and
guide itself in it was first suggested by Askar’yan as early as
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1962 [7]. A few years later, optical beam self-focusing was
first observed in materials with Kerr nonlinearities [8]. In
order to investigate this effect, the wave equation in nonlinear
Kerr media was analyzed in both one and two transverse
dimensions, and spatial self-trapping of optical beams was
proposed by Chiao et al [9]. However, soon after, Kelley
found that the 2D soliton solutions of the NLSE undergo
catastrophic collapse and are thus unstable [10]. Even 1D
solitons are also unstable in a 3D bulk nonlinear medium, since
they can break up into multiple filaments due to transverse
instabilities. Thus, stable spatial solitons in Kerr media can
only exist in configurations where one of the two transverse
dimensions is redundant, i.e. where diffraction is arrested in
one dimension by some other means such as using a slab
waveguide. A few years after Kelley’s paper, Dawes and
Marburger found numerically that saturable nonlinearities are
capable of ‘arresting’ this catastrophic collapse and can lead
to stable 2D spatial solitons [11]. However, these ideas have
been largely ignored for 20 years. It was not until in the early
1990s, with the discovery of photorefractive solitons and the
subsequent observation of quadratic solitons, that saturable
nonlinearities for the stable formation of 2D solitons began
to be explored in experimental systems. Essentially, the very
idea of a ‘saturable nonlinearity’, associated with materials
in which the magnitude of the nonlinear index change has an
upper bound (saturates with increasing intensity), turned out to
be the key to many of the new families of solitons discovered
in the 1990s.

The first experiment on optical spatial solitons was
reported in 1974 by Ashkin and Bjorkholm [12]. They used a
2D circularly symmetric beam in a nonlinear medium (a cell
filled with sodium vapor) and observed self-trapping at higher
powers. This is the classical signature of a spatial soliton. The
nonlinearity encountered in the sodium vapor system was not
of the classical Kerr, but rather of the saturable self-focusing
type that exists near an electronic resonance in a two-level
system. The saturable nature of this latter nonlinearity arises
because intense fields tend to reduce the population difference
between the two energy levels, and hence no additional change
in the refractive index occurs with any further increase in
intensity. This saturable nature of the nonlinearity is essential
because, as predicted by theory, 2D spatial solitons are only
stable under saturable nonlinear conditions. However, at the
same time, this atomic system also exhibits considerable loss,
because it occurs at the close proximity of an atomic resonance.
The loss inevitably limits the propagation distance and the
ability to observe soliton dynamics. One way or the other,
Ashkin and Bjorkholm did not continue to pursue research on
solitons, and the field was deserted without experiments for
another decade. The next experiment on spatial solitons was
carried out in 1985, when self-trapping of an optical beam in a
1D planar waveguide filled with liquid CS2 was observed (as
the first 1D Kerr spatial soliton) by Barthelemy et al [13]. This
soliton experiment opened the way to subsequent 1D soliton
demonstrations in a variety of materials displaying a Kerr-type
nonlinearity, including glass, semiconductors and polymers
[14–17].

Despite these efforts, most spatial soliton experiments
were carried out in 1D configurations using Kerr-type

nonlinear media, partly because exact analytical solutions
could only be found for the 1D Kerr nonlinear NLSE, and
partly because researchers were under the (wrong) impression
that other kinds of nonlinear mechanisms would not be able
to support the formation of stable solitons. In fact, apart from
Ashkin and Bjorkholm’s first soliton experiment, it was never
fully possible to generate a 2D circular soliton propagating as a
long needle of light without diffraction. This is mainly for the
following two reasons. The first reason is the requirement for
exceedingly high powers needed to observe spatial solitons
through the optical Kerr effect. This is because Kerr-type
nonlinearities are of electronic origin and are therefore very
weak. The second reason, as mentioned above, is even more
fundamental. For non-saturable Kerr nonlinearities, light-
induced lensing tends to become stronger and stronger as
the beam intensity increases, thus causing catastrophic self-
focusing and breakup of the beam. As we shall elaborate
on later, the first successful demonstrations of new classes
of spatial solitons that do not necessarily rely on Kerr
nonlinearities were crucial for the development of this field.
In this respect, there were photorefractive solitons that led the
way, followed by quadratic solitons, nematicons in nonlinear
liquid crystals and spatial solitons in nonlocal nonlinear media.

1.3. Why are spatial solitons so interesting?

Optical spatial solitons are not only interesting in themselves,
but also because they exhibit many fascinating features
such as particle-like interactions during collisions. Apart
from fundamental aspects, spatial solitons have also been
suggested for a variety of applications, including for example
waveguiding and beam-splitting, optical interconnects,
frequency conversion, image transmission, gateless computing
and soliton-based navigation.

The equivalence between solitons and particles was
suggested in 1965 [18] when soliton collisions were first
investigated. It was found that any collision between solitons
involves ‘forces’: solitons interact very much like real particles,
exerting attraction and repulsion forces on one another [19].
Such particle-like collisions were subsequently demonstrated
with 1D Kerr spatial solitons in glass waveguides by Aitchison
and co-workers [20, 21]. They showed that two in-phase Kerr
solitons attract whereas two out-of-phase solitons repel each
other. More complex soliton interactions involving coherent
four-wave mixing were reported by Shalaby et al [22]. These
two experiments demonstrated some of the basic collision
properties of conventional Kerr solitons. Under standard
launching conditions, soliton collisions occurring in the 1D
domain are fully elastic and hence the number of solitons is
always conserved. Yet energy exchange between solitons,
in addition to attraction and repulsion, could also occur
under different initial conditions. Soon after the discovery
of photorefractive solitons [23–31], this situation drastically
changed since a much broader class of collision experiments
could be accessed experimentally. For example, the inelastic
collision between two spatial solitons originating from a
saturable nonlinearity was found to lead to soliton fusion or
fission, with particle-like annihilation or birth of new solitons
(see, e.g., [1, 2] for a detailed review).
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Figure 2. An illustration of spiraling collision of interacting spatial
solitons as demonstrated in the experiment with photorefractive
solitons [31]. The arrows at input indicate the initial launching
directions of the two soliton beams. Reproduced with permission
from [31]. Copyright 1997 American Physical Society.

Another interesting aspect of this class of solitons is
that spatial solitons are by nature (2+1)D entities (i.e. the
two transverse dimensions plus one propagation coordinate),
whereas temporal solitons are typically associated with a
(1+1)D space–time evolution. With the ability to generate
stable 2D solitons, a variety of new phenomena became
possible; among them are 3D interactions between solitons,
vortex solitons and angular momentum effects, and rotating
dipole solitons. The fact that the spatial domain involves a
higher dimensionality leads to a host of interesting phenomena
and processes, which cannot be demonstrated with 1D Kerr
spatial solitons and have no analog whatsoever in the temporal
case. Perhaps one of the most intriguing examples is the 3D
collision of interacting 2D spatial solitons spiraling around
each other in a helical DNA-like trajectory, as illustrated in
figure 2 [31].

Over the past two decades, the interest in optical spatial
solitons has surged. As in any other research area, there
have been certain key ideas and experiments that have defined
this field and the directions it has taken. In this review we
discuss a selection of such papers and their significance in the
development of this field. Given that the activity that has taken
place in this area is already enormous, this overview can be by
no means complete.

2. Spatial solitons supported by different types of
nonlinearities

Before the early 1990s, nearly all experimental demonstrations
of spatial solitons employed Kerr or Kerr-like nonlinearities.
The discovery of new classes of solitons in material systems
different from those with standard Kerr nonlinearities opened
up new possibilities in this area. The two major new classes of
solitons discovered, at least in terms of nonlinear mechanisms,
are photorefractive solitons and quadratic solitons. In what
follows, we briefly discuss these two types of spatial solitons.

2.1. Photorefractive solitons

The discovery of photorefractive solitons [23–26] was, for
many reasons, a radical turning point in the development
of the field of spatial solitons. These solitons are formed

due to multiple physical effects associated with the nonlinear
photorefractive effect, by which an index change can be
established in a photorefractive material through a non-
uniform light illumination. In essence, this process involves
the absorption of light and subsequent charge generation, the
motion of charge under the influence of electric fields, and the
consequent establishment of local space-charge fields, which
lead to an index change �n via the electro-optic effect. The
nonlinear response is typically non-local (due to the charge
migration over macroscopic distances) and non-instantaneous
(due to the dielectric relaxation and charge recombination).
As such, the photorefractive nonlinearity is also inherently
saturable, and can occur even with low-power nonuniform
illumination. Because of these unique features of the
photorefractive nonlinearity, photorefractive materials have
provided a convenient and ideal platform for the observation
of a variety of spatial soliton phenomena, including 2D soliton
interaction and spiraling and, subsequently, incoherent solitons
and discrete solitons.

Photorefractive solitons were first predicated and
observed in the quasi-steady-state regime in 1992 by
Segev and colleagues [23, 24]. Shortly thereafter, steady-
state photorefractive self-focusing was reported [27]. The
formation of the so-called steady-state photorefractive
‘screening solitons’ was soon after predicted by Segev et al [25]
and Christodoulides and Carvalho [26]. These solitons were
soon successfully demonstrated in a series of experiments
[28–30, 32]. Figure 1 shows a typical example of a 2D
screening soliton propagating through a biased photorefractive
strontium barium niobate (SBN) crystal [28, 29]. In addition
to steady-state screening solitons, many other families of
photorefractive solitons (e.g. photovoltaic solitons) were
subsequently reported [33, 34], all emerging from the rich
behavior of the photorefractive effects [35].

The discovery of photorefractive solitons was important
for many reasons. For example, the power necessary to
generate these solitons can be as low as a few microwatts
(insensitive to the absolute intensity), thus enabling many
experiments to be carried out with weak CW laser beams.
Another unique feature of photorefractive solitons is that a
weak soliton beam can induce a waveguide that can be used
in turn to guide other more intense beams at wavelengths
that are photorefractively less sensitive [36–38]. This makes
them attractive for waveguiding and steering applications. In
particular, it has been demonstrated in a series of experiments
that photorefractive soliton-induced waveguides can be used
for device applications such as directional couplers and high-
efficiency frequency converters [39, 40].

2.2. Quadratic solitons

Another general class of spatial solitons that has been
experimentally demonstrated was that of quadratic solitons.
Quadratic solitons were predicted in the 1970s in quadratic
nonlinear media [41], and were experimentally demonstrated
in 1995 [42]. In this case, the beam-trapping mechanism arises
because of the energy exchange between the fundamental and
second harmonic, as described by the usual coupled mode
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equations for second harmonic generation (SHG). The initial
experiment used type II phase-matching in KTP, i.e. it involved
two orthogonally polarized fundamental input beams. The
crystal geometry was such that the extra-ordinary fundamental
wave and the second harmonic ‘walked away’ from the
ordinary fundamental beam. That is, the group velocities of
the interacting beams were not collinear. It was demonstrated,
however, that once the soliton was formed on and near phase-
matching conditions, the fundamental and generated second-
harmonic fields were mutually trapped as a result of the strong
nonlinear coupling which counteracted both beam diffraction
and beam walkoff. Furthermore, even though a steady-
state quadratic soliton consists of in-phase fundamental and
harmonic fields, they can also be generated during the SHG
process using a fundamental beam input only. The importance
of this particular type of interaction is that it demonstrated
experimentally that nonlinear wave mixing itself can lead to
soliton formation. In fact, it was shown that any parametric
process involving the product of two finite beams could lead
to mutual self-focusing, and presumably spatial solitons.

About the same time, (1+1)D quadratic solitons were
demonstrated in LiNbO3 waveguides [43, 44]. What
distinguishes this experiment from previous work is the amount
of second harmonic generated. In this case the level of second
harmonic was small, since the geometry chosen was far from
the phase-matching condition. This limit is often called the
cascading or Kerr limit in which only a small amount of second
harmonic is needed to impart a nonlinear phase shift to the
fundamental beam proportional to its intensity. This leads
to beam self-focusing, and quadratic soliton formation can
take place similar to that expected in the Kerr case. This 1D
experiment also indicated that the effective nonlinearity also
depends on the phase mismatch, which can thus be tunable
both in sign and magnitude. In addition, the geometry can be
flexible because stringent phase-matching conditions need not
be imposed. It is these concepts that ultimately led to quadratic
solitons in which temporal spreading was also arrested, at
least in one dimension. For a detailed review about quadratic
solitons, please refer to [45].

2.3. Spatial solitons in nonlocal and other nonlinear media

We briefly mention here that, in addition to the basic Kerr
(cubic), photorefractive and quadratic nonlinearities already
discussed, there are many other families of such nonlinearities
via which optical spatial solitons can form. Some typical
examples of such nonlinear mechanisms include resonant
nonlinear effects in atomic vapors [46], nonlinear upconverted
photobleaching in dye-doped polymers [47, 48], quadratic
electro-optic effects in paraelectric nonlinear crystals [49],
orientational enhanced photorefraction in organic nonlinear
materials [50, 51], orientational [52] and thermal nonlinear
effects [53, 54] in liquid crystals and pyroelectric effects [55].

Among these, an important class of nonlinearities is
that which is associated with nonlocal processes, which may
occur, for example, in liquid crystals and thermal nonlinear
media. Nonlocality in nonlinearity has profound effects
on the dynamics of optical solitons, since it can lead to

a counterintuitive behavior, when compared with traditional
Kerr-type solitons [56–64]. For instance, nonlocal solitons can
overcome repulsion between two out-of-phase bright solitons
or two in-phase dark solitons. Nonlocal solitons can also form
bound states, as observed in both 1D and 2D settings. In
addition, it has been demonstrated that nonlocality can lead
to new families of waves and soliton interaction dynamics
that would have been otherwise impossible in local isotropic
nonlinear media, including solitons in nonlinear media with an
infinite range of nonlocality, long-range interactions between
solitons and nonlocal surface solitons. Some of these newly
studied soliton phenomena will be mentioned in section 5.

3. Different families of spatial solitons

Regardless of the origin of nonlinearity, one can classify
spatial solitons into broader categories based on their inherent
characteristics. Such broad categories may include, for
example, that of bright and dark solitons, single- and multi-
component solitons, coherent and incoherent solitons, spatial
and spatiotemporal solitons, traveling wave and cavity solitons,
as well as continuous and discrete solitons. In this section, we
provide a brief review of a few such different families of spatial
solitons. The general area of discrete solitons will be discussed
separately in the next section.

3.1. Dark solitons and optical vortex solitons

Dark spatial solitons represent self-trapped optical beams
involving a dark ‘notch’ (in the 1D case) or a ‘hole’ (in the 2D
case) in an otherwise bright background. A 1D dark soliton
is typically characterized by a π phase shift across the dark
line where the field is zero, while a 2D dark soliton is a vortex
soliton manifested by an azimuthal 2mπ phase shift around
the dark hole. As was theoretically shown in 1973, 1D dark
solitons should also exist in materials with self-defocusing
nonlinearities, in stark contrast to bright solitons [65]. 2D
dark vortex solitons, studied even earlier within the context of
super-fluidity [66], were also predicted to occur in nonlinear
optics [67].

The first experiments on dark solitons were performed
around 1990 and 1991 [68, 69]. These experiments employed
a variety of media, including those with thermal and
semiconductor nonlinearities, all of which were of the
saturable type. In the early work of Schwartzlander
and co-workers, spatial dark-soliton stripes and grids were
experimentally observed in the transverse plane of a laser beam
propagating in a self-defocusing nonlinear medium. Shortly
after this work, stable propagation of a 2D dark vortex soliton
was also observed in self-defocusing media with thermal
nonlinearities [70]. The vortex was experimentally created
using a quasihelical phase mask, and it propagated without
any change in shape under self-defocusing conditions, except
for a phase rotation around its center of symmetry as imposed
by its azimuthal phase. In addition to dark-soliton stripes and
vortices, gray spatial solitons (with a phase change across the
notch of less than π ) that have a finite transverse velocity were
also demonstrated [71, 72].
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After the first prediction and experimental observation
of bright photorefractive solitons [23, 24], steady-state dark
photorefractive screening [25, 26] and photovoltaic [33]
solitons were also predicted. The first attempt to observe 1D
dark photorefractive solitons and 2D vortex solitons was made
by Duree et al in a bulk photorefractive crystal [73]. These
dark solitons were of the nonlocal type, and were observed
in quasi-steady state. Shortly after, steady-state 1D dark
screening solitons [30, 74, 75] and dark photovoltaic solitons
[76] were also observed. While 2D dark vortex solitons were
anticipated to exist and were indeed observed in isotropic self-
defocusing media [70, 77], it was not immediately obvious
that the anisotropic photorefractive nonlinearity would also
support isotropic structures such as dark soliton grids and
circular vortex solitons. In the experiments of [78, 79],
steady-state photorefractive vortex solitons were successfully
demonstrated by employing the screening nonlinearity in a
biased SBN crystal as well as the photovoltaic nonlinearity in
an unbiased LiNbO3 crystal, despite the inherent anisotropy of
the photorefractive nonlinearity. Interestingly, pairs of optical
vortex solitons were also generated from the instability and
breakup of a dark soliton stripe in both isotropic [80] and
anisotropic [81] saturable self-defocusing nonlinear media.

Dark and vortex solitons have a unique place in nonlinear
optics [82, 83]. The fact that plane waves are unstable in
self-focusing media and can therefore disintegrate into bright
solitons is perhaps not surprising. However, plane waves
are stable in self-defocusing media. Therefore, an extra
‘ingredient’ (phase jump or phase singularity) is needed to
form 1D dark solitons or 2D vortex solitons, as shown in
all experimental demonstrations in homogeneous nonlinear
media. This phase feature associated with dark solitons has
played an important role in soliton phenomena and in particular
in vortex soliton dynamics in discrete nonlinear systems.

3.2. Vector (multi-component) spatial solitons

Vector solitons refer to solitons involving multiple components
that are not only coupled together but that are absolutely
necessary in order to maintain their shapes during propagation.
From a theoretical perspective, the existence of a vector soliton
was first predicted in 1974 by Manakov [84], who studied two
degenerate solitons that are polarized along two orthogonal
axes and coupled through equal self-phase and cross-phase
modulation effects. An experiment on two-component vector
solitons was carried out by Shalaby and Barthelemy in 1992,
who demonstrated that a bright–dark spatial soliton pair can
propagate in a nonlinear material such as CS2 [85]. This
composite structure involved two different soliton components
coupled through cross-phase modulation between the two
different wavelengths. Although vector solitons were also
suggested in the temporal domain (i.e. in fibers) [86–88] and
later on for spatial solitons from a different perspective [89],
it was not until 1996 that the experimental field of multi-
component vector solitons actually blossomed.

The first experimental demonstration of vector solitons
in the form proposed by Manakov was performed in
AlGaAs waveguides in 1996 [90]. When the electric field

vectors are polarized parallel to AlGaAs 1 1 0 and 0 0 1
crystalline axes, it so happens that the self- and cross-phase
modulation terms are approximately equal, thus satisfying the
requirement for Manakov solitons. In that experiment, the
two polarizations were passed through two separate optical
systems with different group velocity dispersions in order
to eliminate the temporal coherence between them. Over
the years, two additional methods (other than those relying
on orthogonal polarizations) were suggested to realize multi-
component solitons. The first one assumes that the two
soliton components are widely separated in the frequency
scale [91], whereas the second one considers components
which are mutually incoherent with respect to each other
[92]. The latter method proves particularly useful in terms of
implementing N -component Manakov-type solitons. This is
possible in materials with non-instantaneous nonlinearities (as
in photorefractive crystals) even when all components share
the same wavelength and polarization. This method was
employed with photorefractive solitons, first to demonstrate
two-component bright–bright, dark–dark and dark–bright
soliton pairs [93, 94], and later on to demonstrate 1D multi-
mode/multi-hump solitons [95] and 2D multimode solitons
consisting of a bell-shaped component and a dipole mode
[96, 97].

The general ideas behind multi-component vector solitons
proved invaluable for later developments and in particular to
the area of incoherent solitons discussed in the next section.

3.3. Incoherent solitons

Incoherent solitons are self-trapped partially coherent wave
entities propagating in nonlinear media. Before 1996,
incoherent solitons were thought to be impossible because
solitons were considered to be exclusively coherent entities. In
1996, self-trapping of partially spatially incoherent light was
first observed in experiment [98] by Segev’s group, followed
by the observation of self-trapping of both temporally and
spatially incoherent white light [99]. Yet in another experiment
shortly after, self-trapping of 1D dark incoherent beams along
with 2D dark incoherent beams (with 2D ‘voids’ nested in
spatially incoherent beams) was also demonstrated [100].
These experimental demonstrations completely changed the
commonly held belief that solitons could only be formed from
coherent waves [101, 102]. Figure 3 shows the experimental
results concerning white-light bright solitons and incoherent
dark solitons.

From a waveguide viewpoint, an incoherent soliton
forms when its time-averaged intensity induces a multimode
waveguide and then traps itself in it by populating the
corresponding guided modes in a self-consistent fashion.
These random-phase and weakly correlated self-trapped
entities exhibit a host of unique properties that have no
analog in the coherent regime. Moreover, their existence
is related to many other areas of physics, in which
nonlinearities, stochastic behavior and statistical averaging are
involved. To describe the formation of incoherent solitons
in non-instantaneous nonlinear materials, several theoretical
approaches were developed, including the coherent density
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Figure 3. Experimental demonstration of self-trapping of (a) a 2D incoherent white-light beam and (b), (c) of a partially incoherent dark
(vortex) beam. The top panels (a) show measured 3D intensity patterns of a white-light beam at input, linear output and nonlinear output
positions, and the middle and bottom panels show 2D transverse patterns and 3D intensity plots of an incoherent vortex beam [99, 100].
Reproduced with permission from [100]. Copyright 1998 American Association for the Advancement of Science.

theory, the modal theory and the mutual coherence theory
[103–107]. Meanwhile, the theory describing the self-trapping
of incoherent dark beams was also established, revealing that
incoherent dark solitons have an inherent grayness because
they consist of both bound and radiation modes [108, 109].

These experimental and theoretical studies clearly showed
that bright and dark solitons can exist with both spatial
and temporal coherence, and laid the basis for subsequent
research on incoherent solitons and incoherent nonlinear
wave dynamics in general. A host of new phenomena
mediated by incoherent waves were subsequently uncovered.
These include, for example, dark soliton splitting and ‘phase
memory’ effects [110], anti-dark incoherent soliton states
[111], and incoherent modulational instability [112–114].
Following this, a number of experiments were carried
out demonstrating the effects of partial coherence on
various soliton-related nonlinear wave phenomena. In
particular, spontaneous clustering of solitons in partially
coherent wavefronts [115] was demonstrated. The clustering
phenomenon is an outcome of the interplay between random
noise, weak correlation and high nonlinearity, which has
no counterpart with solitons in coherent systems. Another
example is the formation of spatial soliton pixels from partially
coherent light [116] as illustrated in figure 4, whereas closely
spaced spatial solitons are difficult to realize with coherent
light. The rapid progress in the new area of incoherent solitons
also set up the basis for the later advancements in incoherent
(random-phase) solitons in discrete nonlinear systems.

3.4. Spatiotemporal solitons

Spatiotemporal solitons are simultaneously confined wavepack-
ets of radiation in both space and time, often termed as ‘optical
bullets’. While both temporal and spatial solitons have been

Figure 4. Experimental demonstration of spatial soliton arrays of
partially incoherent light. Reproduced with permission from [116].
Copyright 2002 The Optical Society.

well known since the early 1970s, the possibility of optical bul-
lets was not suggested until 1990 [117]. Since then, there have
been many attempts in generating such optical bullets, but ex-
perimental demonstration was hampered due to the difficulty
in finding the right material so that, for a given optical pulse
width, the dispersion length in time matches the diffraction
length in space as well as the nonlinear length. In fact, in ordi-
nary materials such as glass, a precise balance of the nonlinear
and linear effects is hard to maintain, as a slight variation in
pulse or material parameters can easily destroy such a balance.

The first experimental work reporting a ‘quasi-bullet’
used clever schemes to control the GVD along one spatial
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axis [118]. In that experiment, the spatiotemporal solitons
observed were 2D in nature: they were confined in time
and one transverse spatial dimension, but underwent linear
diffraction in the second dimension. The experiment used
quadratic soliton interactions in the cascaded limit in bulk
LiIO3 with highly elliptically shaped beams. The pulse width
of 110 fs was used, with a grating engineered GVD, to match
the dispersion length to the diffraction length in one transverse
dimension. Ultimately, however, such solitons are unstable at
high intensity levels due to the lack of confinement along the
second spatial dimension, and thus a collapse into a number
of filaments occurs. This first experiment further stimulated
the experimental search for light bullets [119]. X waves were
also proposed as a means to resist the effects of diffraction
and dispersion but by their very nature are not localized (they
have an infinite norm) [120]. Nevertheless, recent advances in
spatiotemporal solitons as well as intelligent beam engineering
have opened the road to ‘true’ 3D optical bullets as we shall
mention in section 5.

3.5. Dissipative spatial solitons and cavity solitons

Dissipative solitons are self-trapped structures occurring in
non-conservative systems, which require a nonlinear balance
between loss and gain in addition to that between nonlinearity
and dispersion/diffraction [121]. Dissipative solitons may
arise as bright spots in a 2D transverse plane orthogonal to
the beam propagation direction, often in an optical pattern-
forming system with or without feedback. They have been
studied in a number of experimental settings [122–127].

A typical example of such an entity is the so-called cavity
soliton, which appears as a single-peak localized structure
trapped between reflecting surfaces in contrast to other solitons
that are traveling waves. In semiconductor devices, cavity
solitons have been predicted to exist as spatial soliton pixels
[122] and have been experimentally observed [127] in broad-
area vertical cavity surface emitting lasers (VCSELs) driven
by injection of a coherent and homogeneous field as a holding
beam. This introduces new properties and significantly
widens the class of materials in which soliton phenomena
may be explored. Although there have been a number of
experiments reported on patterns in resonators, evidence of
localization of structures as isolated solitons was reported with
a passive semiconductor microresonator, one of the simplest
nonlinear optical feedback systems [125]. Requirements
for the formation of solitons or localized structures were
investigated in the spectral range where the nonlinearity of the
semiconductor material is dispersive and defocusing. Another
experiment reported stable, controllable spatial solitons in
Na vapor with a single feedback mirror [126]. However,
a clear experimental demonstration of cavity solitons was
carried out with VCSELs that were electrically pumped above
transparency but slightly below the lasing threshold [127], in
which the generated cavity solitons could be written, erased
and manipulated as objects independent of each other and of
the boundary.

The progress on cavity solitons, especially in systems that
do not support traveling-wave states (e.g. dissipative sys-
tems), is expected to bring up new possibilities with spatial

solitons. Some recently studied examples include cavity soli-
ton lasers [128, 129], Bloch cavity solitons [130] and cavity
polariton solitons [131].

4. Spatial solitons in discrete systems

Linear and nonlinear discrete or periodic systems are abundant
in nature. In optics, a typical example of such an arrangement
is that of a closely spaced waveguide array, in which
the collective behavior of wave propagation exhibits many
intriguing and unexpected phenomena that have no counterpart
in homogeneous media. In such discrete systems, another
fascinating class of self-trapped states, spatial discrete solitons
(or lattice solitons), have been uncovered and have become
the mainstream of soliton research in the past decade. These
solitons arise from the interplay between discreteness and
nonlinearity. Since the first prediction [132] and experimental
demonstration [133] of 1D discrete solitons, this field has
grown rapidly. For a detailed review, please refer to
[134–136]. Below we just provide a brief overview of some
key experimental works on discrete solitons carried out in 1D
AlGaAs nonlinear waveguide arrays and 2D optically induced
photonic lattices.

4.1. Discrete solitons in 1D waveguide arrays

A discrete soliton can form as a result of a balance
between discrete diffraction and nonlinear self-focusing
effects in periodic waveguide arrays, as first predicted by
Christodoulides and Joseph in 1988 [132]. Unlike other
families of spatial solitons, which are known to exist
in homogeneous media, discrete solitons result from the
collective behavior of the array as a whole. In reality they
represent nonlinearity induced defect modes in a photonic
crystal or a photonic lattice [134–136]. In the pioneering
experiment of Eisenberg et al a 1D discrete soliton was
observed in an AlGaAs nonlinear waveguide array [133], in
which the light became trapped to only a few waveguides
through the Kerr self-focusing nonlinearity, as opposed to
linearly spreading laterally due to evanescent wave coupling
(figure 5). This first observed discrete soliton existed in the
so-called semi-infinite gap. This is because of the nonlinear
induced refractive index change, so the propagation constant
of the soliton itself was locally elevated to the semi-infinite
gap under the self-focusing nonlinearity. In subsequent
experiments, Morandotti et al studied discrete soliton transport
as well as self-focusing and defocusing dynamics in such
1D waveguide arrays [137, 138] based on the normal and
anomalous diffraction properties of the system [139, 140].
Much of the earlier theoretical and experimental work on
1D waveguide arrays has been reviewed in [141, 142]. The
bandgap structures and peculiar refraction and diffraction
properties of discrete optical systems provided many new
possibilities for spatial solitons that could not otherwise occur
in continuous optical systems [136].

An example unique to solitons in discrete systems is that
of a gap soliton. In optics, gap solitons are traditionally
considered as temporal phenomena in 1D periodic media such
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Figure 5. Experimental demonstration of a 1D discrete optical
soliton in AlGaAs semiconductor waveguide arrays. Images are
taken from the output facet of a 4 mm long sample for different
powers. At low powers, the beam displays linear diffraction, but at
high powers, a discrete soliton is formed. Reproduced with
permission from [133]. Copyright 1998 American Physical Society.

as fiber gratings [143–145]. The existence of spatial gap
solitons in waveguide arrays was suggested by Kivshar in
1993 [146]. In contrast to discrete solitons existing in the
semi-infinite gap, these latter spatial gap solitons require a
balance between anomalous diffraction and self-defocusing
nonlinear effects. In this case, the nonlinear index change
makes the soliton propagation constant lie somewhere between
the first and the second optical Bloch bands (within the first
gap), near the edge of the first Brillouin zone (BZ) of a
waveguide array. Such gap solitons have a ‘staggered’ phase
structure, as first observed in 1D photonic lattices optically
induced in a photorefractive nonlinear crystal by Segev’s
group [147]. In subsequent experiments, 1D Floquet–Bloch
gap solitons [148], reminiscent of those in Bragg gratings
[143], and the generation and steering of spatial gap solitons
originating from higher Bloch bands [149, 150] were also
demonstrated. Another process unique to solitons in discrete
systems is that associated with discrete diffraction managed
spatial solitons [151].

In addition to fundamental discrete solitons, other
families of spatial solitons and related nonlinear phenomena
studied in the bulk have also been investigated in discrete
systems, including dark discrete solitons [138, 152], discrete
modulation instability [153] and discrete vector solitons [154].
As we will see, the first experimental demonstration of
2D discrete solitons [155] opened up new opportunities in
exploring the rich physics of nonlinear periodic systems.

4.2. Discrete solitons in 2D photonic lattices

Although 1D waveguide arrays can serve as a test bench
for studying many fascinating effects, it became increasingly
clear that the opportunities offered by 1D arrays were rather
limited, while rich soliton phenomena could arise in a high-
dimensional environment. For instance, it has been suggested
that, in 2D discrete waveguide networks, discrete solitons
can be effectively routed or totally blocked using soliton
collisions [156]. Yet, it has always been a challenge to fabricate
2D waveguide arrays with appropriate nonlinearity in bulk
media.

The first experimental observation of a 2D optical discrete
soliton was made in a biased photorefractive crystal by Segev’s
and Christodoulides’ groups [155]. Much of their success
relied on a key idea, suggested by Efremidis et al from these
same groups in 2002 [157], of optically inducing defect-
free 2D nonlinear photonic lattices in biased photorefractive
crystals such as SBN. The suggested optical induction method
made use of the large electro-optic anisotropy of these
nonlinear crystals and the associated photorefractive screening
nonlinearity used earlier for the generation of photorefractive
solitons [25–30, 32]. In such arrangements, the nonlinear
index change induced and experienced by an optical beam
depends on its polarization as well as on its intensity.
Under appreciable bias conditions, this index change for an
extra-ordinarily polarized beam can be 10 or more times
larger than that for an ordinarily polarized beam, due to
the large difference between the electro-optic coefficients in
the nonlinear photorefractive crystal. Thus, if the lattice-
inducing beam is o-polarized while the soliton-forming beam
is e-polarized, the lattice beam would induce only a weak
index change and could be considered as undergoing linear
propagation, while the soliton-forming beam can not only
experience the periodic optically induced lattice but can
also exhibit nonlinear behavior. Using this mechanism,
Fleischer et al created a 2D invariant photonic lattice in an
SBN:75 crystal by interfering multiple plane-wave beams and
observed the 2D discrete spatial solitons as well as 2D gap
solitons [155].

The optical induction method was subsequently used by
many other teams. In particular, Kivshar’s group observed
twisted soliton modes in 1D optically induced gratings
[158], and Chen’s group demonstrated discrete soliton-induced
dislocations in 2D partially coherent lattices [159]. The
latter established 2D photonic lattices based on the amplitude
modulation of a partially coherent beam rather than multiple-
beam interference, with active control of the Talbot effect of
the lattice-inducing beam. In such partially coherent lattices, a
clear transition from 2D discrete diffraction to discrete solitons
was observed and recorded as the nonlinearity was gradually
increased. Figure 6 shows typical experimental results of
2D discrete solitons observed in 2D photonic lattices induced
with partially coherent light. The method of optical induction
based on partially coherent light provided an effective way
for inducing nonlinear photonic lattices [116] and later on for
inducing various reconfigurable lattices with structured defects
and surfaces [160, 161].

Apart from fundamental discrete solitons in 2D lattices,
discrete vortex solitons with topological phase singularities
were also proposed [162, 163] and soon after demonstrated
experimentally in the same setting of such optically induced
photonic lattices [164, 165]. These singly charged vortex-
ring solitons have a nontrivial π /2 step-phase structure, as
confirmed experimentally by interference phase measurements
(figure 7). Shortly after, higher band vortex gap solitons
were also identified and observed in 2D induced lattices
[166, 167], as well as higher charge [168, 169] and necklace-
type [170] self-trapped vortex structures. In fact, using such
a lattice reconfiguration under both self-focusing and self-
defocusing nonlinearities [155, 171–173], a host of discrete
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Figure 6. Experimental demonstration of a 2D discrete spatial soliton in an optically induced photonic lattice. (a) Input, (b) diffraction
output without the lattice, (c) discrete diffraction at low nonlinearity and (d) discrete soliton formation at high nonlinearity. Top panels: 3D
intensity plots; bottom panels: corresponding 2D transverse intensity patterns. Reproduced with permission from [159]. Copyright 2004
American Physical Society.

Figure 7. Experimental demonstration of discrete vortex solitons. (a)–(d) On-site vortex beam in which the singularity is centered on a
waveguide site, where (a) shows input, (b) linear diffraction output, (c) an interferogram formed by interfering the output beam (b) with a
plane wave showing the characteristic 0 → 2π phase structure of a vortex, and (d) nonlinear output of vortex-ring lattice soliton.
Reproduced with permission from [165]. Copyright 2004 American Physical Society. (e)–(h) Off-site vortex lattice soliton in which the
singularity is located between sites, where (e) shows the soliton output, and (f )–(h) are interferograms formed when the phase of the plane
wave is successively changed in steps of π/2. Reproduced with permission from [164]. Copyright 2004 American Physical Society.

soliton phenomena was demonstrated in various experimental
settings. These included, for example, 2D dipole and vector
lattice solitons [172, 173], discrete soliton trains [174, 175],
incoherent (random phase) lattice solitons [176, 177], rotary
solitons in Bessel-type ring lattices [178, 179], solitons
in quasi-crystal lattices and honeycomb lattices [180, 181],
‘reduced-symmetry’ solitons [182], in-gap and in-band
(‘embedded’) soliton trains [183, 184] and discrete surface
solitons, which we shall discuss separately in the section that
follows. Other research conducted in 2D induced lattices
includes, for example, the development of the Brillouin-
zone spectroscopy method [185], spatial four-wave mixing
and super-continuum generation [186, 187], bandgap guidance
in lattices with low-index cores and structured defects
[188–190], Bloch oscillations and Zener tunneling [191], and
the seminal experiment on transport and Anderson localization
in disordered photonic lattices [192].

Another major step in 2D photonic structures is the recent
development of high-precision femtosecond-laser writing of
waveguide arrays in silica, which also enabled the observation
of discrete solitons, as reported by Szameit et al [193, 194].
This development is important not only because it provided
a promising alternative for fabricating 2D arrays, but also
because it led to a powerful platform for ‘fabricating’ photonic
lattices of various configurations—virtually any periodic or

aperiodic network of waveguide arrays could be realized using
this method.

4.3. Discrete surface solitons

Since Tamm and Shockley introduced electronic surface waves
in the 1930s, surface wave phenomena have been of continuing
interest in various areas of physics. In optics, nonlinear
stationary surface states were actively considered in the early
1980s. However, progress in directly observing such nonlinear
surface states was hampered by issues such as high power
requirement and instabilities.

In the context of discrete systems, it is of course natural
for one to ask as to whether optical self-trapped waves can
exist at the surface of a photonic lattice or at the interface
between two different photonic structures. Along these
lines self-trapped surface waves (optical surface solitons)
were soon proposed and experimentally demonstrated. Such
states can be loosely interpreted as nonlinear defect modes
with propagation constants (or eigenvalues) located within
the forbidden optical bandgaps of a periodic structure. 1D
in-phase surface solitons were first predicted to exist at
the edge of nonlinear self-focusing waveguide lattices by
Stegeman’s and Christodoulides’ groups [195], and were
demonstrated experimentally shortly after by the same
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Figure 8. Experimental demonstration of 2D surface solitons. (a) Microscope image of a laser-written array with an excited waveguide
marked by a circle. (b)–(d) Output intensity distributions for progressively increasing input power levels. Observation of surface soliton
(middle row) and surface gap soliton (bottom row) in an optically induced photorefractive lattice. (e), (i) Lattice patterns with the
waveguide excited by the probe beam marked by a cross. (f ), (j ) Surface soliton intensity patterns. (g), (k) Interference pattern between the
soliton beam and a tilted plane wave. (h) 3D intensity plots of an in-phase surface soliton and (l) the corresponding pattern when its
intensity is reduced significantly under the same bias condition. In all plots, dashed lines mark the interface. (b)–(d) Adapted with
permission from [207]. Copyright 2007 American Physical Society. (e)–(l) Reproduced with permission from [206]. Copyright 2007
American Physical Society.

group in AlGaAs arrays with a dominant Kerr nonlinear
effect [196]. Meanwhile, 1D surface gap or ‘staggered’
solitons at the interface between a uniform medium and
a self-defocusing waveguide array were also proposed
[195, 197], and demonstrated in both quadratic [198] and
saturable photorefractive nonlinear media [199, 200]. Unlike
their in-phase counterparts, these latter entities have their
propagation eigenvalues located in the first photonic bandgap
(between the first and second Bloch bands) at the edge of
the BZ. These studies extend the correspondence between
optical surface waves and localized surface Tamm states into
the nonlinear regime, since surface gap solitons can be viewed
as the optical nonlinear analogs of Tamm states [201].

In the 2D domain [202–205], a direct experimental
observation of 2D surface solitons remained a challenge due
to experimental difficulties in fabricating 2D nonlinear lattices
with sharp surfaces or interfaces. In 2007, two independent
experimental demonstrations of 2D surface lattice solitons
were reported using different materials and settings: one was
accomplished by Wang et al in optically induced lattices in a
photorefractive crystal [206], while the other was carried out by
Szameit et al in femtosecond-laser-written waveguide arrays
in bulk fused silica [207]. Figure 8 shows typical experimental
results of 2D discrete surface solitons obtained from these
two independent studies. In the fs-laser-written waveguide
experiment, focused laser pulses were sent into bulk fused
silica, which created a localized permanent increase in the
refractive index of the material [194]. Consequently, when
moving the sample transversely with respect to the beam, a
longitudinal extended index modification (a waveguide) was
written. A microscope image of the facet of such a laser-written

5×5 waveguide array is shown in figure 8(a). While for low
input peak powers a clear spreading of the light into the array
was observed, for a high input peak power almost all of the
light was localized in the excited waveguide [207]. In the
photorefractive induction experiment, the lattice pattern was
generated by a periodic modulation of a partially incoherent
optical beam with an amplitude mask, which was then sent into
an SBN crystal to induce a square lattice featuring sharp edges
or corners. With an appropriate high bias field, the spreading
of a probe beam was suppressed at the lattice interface to
form a discrete surface soliton and a surface gap soliton, while
the beam at reduced intensity displayed significant diffraction
under the same lattice conditions [206].

Over the last few years, considerable work has been
devoted to discrete surface solitons [136, 201]. Much of the
work theoretically investigated surface solitons of different
types such as vector, vortex, incoherent, polychromatic and
spatio-temporal surface solitons [203, 208–212]. Given that
the geometries of the lattice surfaces and interfaces can vary
considerably, discrete surface solitons were observed in a
number of different settings including the interface between
two dissimilar periodic media and superlattice surfaces
[213–216]. In addition to nonlinear Tamm-like surface states,
linear optical Shockley-like surface states were first introduced
and observed in optically induced photonic superlattices
[217, 218], and in subsequent experiments, transitions
between Shockley-like and nonlinear Tamm-like surface states
were also demonstrated. Furthermore, surface states that do
not belong to the same family of Tamm or Shockley states have
also been demonstrated as a new type of defect-free surface
states in fs-laser-written curved waveguide arrays [219, 220].
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4.4. Discrete solitons in other material systems

In addition to the aforementioned intensity-dependent discrete
media (AlGaAs semiconductors, optically induced photonic
lattices and fs-laser-written waveguides), spatial discrete
solitons were also studied and experimentally observed in
many other material systems. In particular, Lederer’s group
theoretically investigated the formation of quadratic discrete
solitons based on the cascaded nonlinearity [221, 222], and
subsequently, these solitons along with discrete modulation
instability were observed by Stegeman’s group in quadratic
nonlinear waveguide arrays [223, 224]. Discrete solitons were
also observed in nematic liquid crystal cells by Assanto’s
group [225, 226], and in defocusing photovoltaic LiNbO3

waveguide arrays by Kip’s group [227]. Other families
of spatial solitons previously studied in continuous systems
such as cavity solitons and dissipative solitons were also
suggested in discrete nonlinear arrangements [228, 229].
Discrete solitons and nonlinear localized modes were studied
in photonic crystal waveguides [230] and nonlinear coupled
microcavities embedded in photonic crystals [231]. Many
other theoretical and experimental studies considered discrete
solitons in various optical settings [134–136, 232, 233].

5. Recent developments in optical spatial solitons

Apart from a continuous growth of interest in spatial solitons
in waveguide arrays and photonic lattices, other advances
in optical spatial solitons are nowadays impacting fields
like Bose–Einstein condensates, soft-condensed matter and
plasmonics. Some recently discovered optical solitons or
related novel phenomena include 3D light bullets, self-
accelerating solitons propagating along curved trajectories,
subwavelength plasmonic solitons in nonlinear metamaterials,
soliton formation and self-induced transparency in nonlinear
soft condensed matter, and spatial beam dynamics and optical
solitons in nonlinear materials of parity–time (PT) symmetry.

5.1. New families of spatial solitons

As previously indicated the field has been constantly enriching
itself with new ideas. Even during the period of writing this
review, there have been many such developments in spatial
soliton phenomena reported in the literature. Here, we present
just a few samples of such recent activities.

Nonlocal incoherent solitons. Incoherent optical spatial
solitons are self-trapped beams with a multimode structure
that varies randomly in time, which occur in nonlinear
homogeneous [98] and periodic [176, 177] materials with non-
instantaneous nonlinearities. Apart from incoherent spatial
solitons supported by nonlinearities with a slow response
time (much longer than the characteristic fluctuation time of
the beam, thus named ‘non-instantaneous’), it has recently
been demonstrated by Segev’s group that incoherent solitons
could also exist in effectively instantaneous nonlocal nonlinear
media [234, 235]. These solitons exhibit fundamentally new
features: they propagate along random trajectories and they
can be created in various nonlinear optical media as well as in

other settings where the nonlinearity is nonlocal and very fast.
This was somewhat surprising since it was believed that optical
incoherent spatial solitons can exist only in noninstantaneous
nonlinear media. The reason behind this was that only under
such conditions could the nonlinear index change induced
by a fluctuating beam become stationary in the propagation
direction, which is necessary for guiding the multiple modes
comprising the incoherent beam. Nonlocal nonlinearities can
overcome this obstacle, as the trapping process is mediated
by a highly nonlocal nonlinear response, which yields a
spatial averaging instead of the traditional temporal averaging
provided by the noninstantaneous response. Using this
approach, nonlocal incoherent solitons were demonstrated
not only in bulk media, but also at the interface between a
linear medium and a highly nonlocal, effectively instantaneous
nonlinear medium [236]. These incoherent nonlocal surface
solitons exhibit features which are fundamentally different
from their bulk counterparts or surface solitons created with
local nonlinearities. Nonlocal incoherent solitons were also
found to exist in spatially nonlocal nonlinear media with a
logarithmic type of nonlinearity [237].

Polychromatic solitons. Polychromatic solitons are self-
trapped optical beams involving multiple frequency compo-
nents that are nonlinearly coupled together and propagate in
the same direction. These solitons were previously studied
theoretically as polychromatic partially spatially incoherent
solitons in a noninstantaneous Kerr nonlinear medium, where
a polychromatic incoherent soliton exists when its higher tem-
poral frequency components are less spatially coherent than
the lower frequency components [238]. Recently, there has
been a great deal of interest in the study of multiple color
beams, including the propagation of broad bandwidth and
multi-color optical wavepackets in periodic photonic struc-
tures, under supercontinuum and white light generation condi-
tions. In bulk nonlinear media, polychromatic or white-light
solitons can only be supported by self-focusing nonlinearities.
In photonic lattices, however, it was found that polychromatic
solitons can exist under both self-focusing and -defocusing
conditions. In particular, Neshev et al reported the experi-
mental observation of discrete polychromatic solitons resulting
from the localization of supercontinuum light through the non-
linear interaction of spectral components in extended periodic
structures (figure 9) [239]. Polychromatic vortex solitons and
discrete polychromatic surface solitons were demonstrated in
subsequent experiments [240–242]. Meanwhile, in arrays of
periodically curved waveguides, some fundamental processes
occurring in solid-state physics such as dynamical localiza-
tion have been introduced into optics and demonstrated in
laser-written waveguide arrays [243–245]. In the nonlinear
regime, polychromatic solitons have also been studied recently
in curved waveguide arrays. When spectral components inter-
act incoherently, the longitudinal modulation of the waveguide
coupling can facilitate all optical switching of polychromatic
light between two coupled waveguides, whereas in curved
waveguide arrays nonlinearity leads to symmetry breaking
and formation of polychromatic diffraction-managed solitons
[246]. These results demonstrate new possibilities for tunable
demultiplexing and spatial filtering of supercontinuum light.
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Figure 9. Experimental demonstration of spectrally resolved nonlinear localization of the supercontinuum in a waveguide array. At low
powers, the supercontinuum beam diffracts linearly (left), but self-trapping is achieved at high powers (right). Reproduced with permission
from [239]. Copyright 2007 American Physical Society.

‘Saddle’ solitons and hybrid nonlinearity. Periodic struc-
tures can exhibit several intriguing optical properties. In an
optically induced 2D square lattice, for example, the high-
symmetry X-point in the first Bloch band is akin to a ‘saddle’
point in the diffraction spectrum, where normal and anoma-
lous diffractions co-exist along orthogonal directions. At this
X-point, a quasi-1D soliton train can be excited provided that
an appropriate type of nonlinearity is used to balance beam
diffraction in one particular direction, whereas in the orthog-
onal direction it is an extended plane wave. The propaga-
tion constant of such a 1D soliton train could reside within
the first Bloch band, thus termed ‘in-band’ or ‘embedded’
solitons [184]. However, to simultaneously balance normal
and anomalous diffractions in different directions, one needs
orientation-dependent hybrid nonlinearity. Such nonlinear-
ity was identified by Zhang et al in nonconventional biased
photorefractive crystals [247–251], in which a co-existence of
self-focusing and -defocusing nonlinearities at two orthogonal
directions can lead to a controlled 1D soliton transition from
different band edges or subband edges [252]. This new setting
enables the reconfiguration of photonic structures and BZs for
band-gap engineering and light manipulation, including the
control of Bragg reflection and the interplay between normal
and anomalous diffraction/refraction under the same excita-
tion conditions. Furthermore, with such hybrid nonlinearity, a
new type of spatial gap solitons, namely, ‘saddle’ solitons, can
be established. In fact, Hu et al observed such ‘saddle’ soli-
tons by balancing the saddle-shaped bi-diffraction with hybrid
focusing/defocusing in an optically induced 2D ionic-type lat-
tice [253]. These ‘saddle’ solitons have a propagation constant
residing in the Bragg reflection gap, but they differ from all
previously observed solitons supported by a single focusing or
defocusing nonlinearity.

Self-trapping of self-accelerating beams. Recently, a new
class of nondiffracting beams, namely self-accelerating Airy
beams, has been suggested by Christodoulides’ group [254–
256]. In contradistinction with Bessel beams, Airy beams
do not rely on simple conical superposition of plane waves.
More importantly, they can self-accelerate during propagation
in addition to being nondiffracting and self-healing. Over the
past few years, considerable research has been devoted to Airy
beams, ranging from their linear control to nonlinear self-
trapping, covering fundamental aspects and demonstrations

for proposed applications. In practice, all non-diffracting Airy
beams must be truncated, to keep their power finite. Such
truncated beams eventually diffract and lose their structure
after a long enough propagation distance. To overcome this
problem several teams considered methods by which nonlinear
physical mechanisms could be used to nonlinearly self-trap
Airy beams, very much as in the case of optical spatial solitons.

In particular, Chen’s group studied the behavior of
Airy beams as they move from a nonlinear medium to
a linear medium. It was shown that an Airy beam,
initially driven by a self-defocusing nonlinearity, experiences
anomalous diffraction and can maintain its shape in subsequent
propagation. Conversely, its intensity pattern and acceleration
cannot persist when driven by a self-focusing nonlinearity
[257]. Fleischer’s group reported the experimental observation
of self-trapping of Airy beams in nonlinear photorefractive
media with a diffusion nonlinearity [258]. In this case the
self-trapped wavepacket self-bends during propagation at an
acceleration rate that is independent of the thermal energy
associated with the diffusive nonlinearity, and they represent
a typical example of Airy solitary-like wave formation using
two-wave mixing. Quite recently, Segev’s group studied self-
accelerating self-trapped beams in nonlinear optical media
[259], exhibiting self-focusing and self-defocusing Kerr and
saturable nonlinearities, as well as a quadratic response. In
Kerr and saturable nonlinear media such beams are stable
under self-defocusing and weak self-focusing, whereas for
strong self-focusing the beams off-shoot solitons while their
main lobe continues to accelerate. These self-trapped Airy-
like accelerating beams in nonlinear media propagate along
parabolic trajectories, different from all optical spatial solitons
previously observed in continuum or discrete nonlinear media.
Yet in more recent developments, self-accelerating beams have
been extended to nonparaxial regimes, where one could expect
solitons to travel along a circular trajectory [260–263]. Under
the action of nonlinearity, one could perhaps envision that
‘optical boomerang’ like beams might be realized originating
from such nonparaxial self-accelerating beams.

5.2. Filamentation and light bullets

As mentioned before, there has been a considerable effort in
generating wavepackets that are localized in all 3D space–
time dimensions (propagating free of diffraction and dispersion
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effects). Generating a light bullet typically requires a nonlinear
mechanism that can simultaneously balance diffraction and
dispersion during propagation, thus forming a spatiotemporal
soliton as first suggested by Silberberg [117]. Over the
past two decades, researchers have explored a variety of
alternative materials and techniques to generate light bullets.
Quite recently, Chong et al explored a new approach based
on a nondiffracting Bessel beam and a non-dispersing 1D
Airy pulse, thereby demonstrating Airy–Bessel wavepackets
as versatile linear light bullets [264]. For nonlinear light
bullets, Burgess et al introduced a new form of stable
spatiotemporal self-trapped optical packets stemming from the
interplay of local and nonlocal nonlinearities [265], where
self-trapped light beams in media with both electronic and
molecular nonlinear responses can be established due to a
decoupling of spatial and temporal effects for independent
tuning. Panagiotopoulos et al proposed an approach to tailor
the filamentation of intense femtosecond laser pulses with
periodic lattices [266], where diffraction induced by the lattices
provides a regularizing mechanism to the nonlinear self-action
effects involved in filamentation, leading to a new propagation
regime of intense lattice solitons.

It is also worth noting that, quite recently, Minardi
and co-workers reported the first experimental observation
of 3D light bullets excited by femtosecond pulses in a
system featuring a quasi-instantaneous cubic nonlinearity and
a periodic, transversally modulated refractive index [267]. A
40 mm long, closely spaced 2D hexagonal array of silica glass
waveguides was fabricated, and 170 fs pulses at a wavelength
of 1550 nm (for which the glass had anomalous dispersion)
were launched into a single waveguide at the center of the
array. As illustrated in figure 10 [268], an input pulse exhibited
linear propagation in the array at low powers, spreading from
the excited waveguide into several neighboring waveguides
while the pulse profile broadened. However, at high powers,
not only the pulse became localized in the original waveguide
but also the output pulse duration became much shorter.
These experimental results represent the first demonstration
of light pulses simultaneously localized in space and time
for distances longer than the characteristic lengths dictated by
linear propagation.

5.3. Subwavelength spatial plasmon solitons

Spatial plasmon solitons were studied theoretically in Kerr
slabs embedded between metal plates [269] and in discrete
nonlinear metamaterials [270]. Solitons in nanoscale periodic
structures consisting of metal and nonlinear dielectric slabs
rely on a balance between tunneling of surface plasmon
modes and nonlinear self-trapping. The evolution in
such systems arises from the threefold interplay between
periodicity, nonlinearity and surface plasmon polaritons, and
is substantially different from that occurring in conventional
nonlinear dielectric waveguide arrays. Later, Peleg et al
[271] studied wave propagation in arrays of subwavelength
waveguides with a sharp index contrast, and found a self-
reviving soliton (‘phoenix soliton’) comprised of coupled
forward- and backward-propagating light, originating solely

Figure 10. Illustration of 3D light bullets as observed in experiment
with fs laser pulses propagating through a hexagonal array of glass
waveguides. (top) A pulse undergoes spreading in both space and
time during propagation in the waveguide array. (bottom) Nonlinear
effects cause the light packet to remain stable and compact as it
moves [267, 268]. Image courtesy of Alan Stonebraker. Reproduced
with permission from [268]. Copyright 2010 American Physical
Society.

from evanescent bands. In the linear regime, all Bloch waves
comprising this wavepacket decay, whereas the nonlinearity
can herd them into a propagating self-trapped beam. Recently,
Ye et al [272] predicted theoretically that stable subwavelength
plasmonic lattice solitons could be formed in arrays of
metallic nanowires embedded in a nonlinear medium. The
tight confinement of the guiding modes of the metallic
nanowires, combined with the strong nonlinearity induced by
the enhanced field at the metal surface, can provide the main
physical mechanisms for balancing the wave diffraction and
the formation of plasmonic lattice solitons. Davoyan et al
[273] suggested a method for using tapered waveguides for
compensating the losses of surface plasmon polaritons in order
to enhance nonlinear effects on the nanoscale. They studied
nonlinear plasmon self-focusing in tapered metal–dielectric–
metal slot waveguides and demonstrated stable propagation of
spatial plasmon solitons. The study of subwavelength solitons
as nonlinear self-trapped plasmon modes is just beginning,
and any success is expected to have important applications to
subwavelength nonlinear nanophotonics.

5.4. Spatial solitons in soft condensed matter

Artificial nonlinear materials consisting of liquid suspensions
of sub-micrometer dielectric particles have been of great
interest since the early 1980s. Recently, a number of
theoretical and experimental studies have considered nonlinear
phenomena including modulation instability, spatial solitons
and beam filamentation in nonlinear colloidal suspensions,
and in soft condensed matter in general [274–279]. The
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effects leading to self-channeling of light in fluid suspensions
can be classified into two general classes: effects relying
on light scattering, i.e. optical gradient forces, and thermal
effects relying on (weak) absorption. Using thermal effects
in liquids, the refractive index typically decreases with
increasing temperature. Therefore, such systems can only
support dark solitons. Recently, Segev’s group predicted
and observed a new type of self-trapped beam: a hot-particle
soliton [280], formed in a nanoparticle suspension by virtue
of thermophoresis. These experiments manifest a new kind
of interplay between light and fluid. On the other hand,
using scattering effects, most studies so far have considered
colloidal suspensions of the polystyrene–water type. In these
latter arrangements, the particles have a refractive index that
is higher than that of the liquid, i.e. the suspension has a
positive polarizability. Interestingly, it has recently been
suggested that beam propagation in nanosuspensions with
negative polarizabilities (when the index of the particles is
lower than that of the liquid) can be stable and can exhibit
unusual nonlinear optical properties such as self-induced
transparency [281]. In fact, experimental demonstrations of
self-trapping and enhanced transmission of an optical beam in
nonlinear nanosuspensions exhibiting negative polarizabilities
were reported very recently [282]. While self-focusing was
observed in colloidal nanosuspensions with both positive
and negative polarizabilities, self-induced transparency of
an optical beam was realized only in colloidal systems
with negative polarizabilities. These studies bring about
many possibilities for studying nonlinear phenomena in
nanosuspensions and soft condensed matter in general.

5.5. Spatial solitons in systems with PT symmetry

In 1998, it was proposed by Bender and Boettcher that a
wide class of Hamiltonians, although non-Hermitian, can still
exhibit real eigenvalue spectra provided that they obey the
PT requirements or PT symmetry [283, 284]. The concept
was introduced to optics ten years later by Christodoulides
and co-workers, who investigated spatial beam dynamics in
synthetic optical media with PT symmetries imposed by a
balanced arrangement of gain or loss [285]. Experimental
realizations of such PT systems have been reported recently,
including observation of spontaneous PT symmetry breaking
and power oscillations violating left–right symmetry in a PT
optical coupled system involving a complex index potential
[286], and observation of passive PT-symmetry breaking
and phase transition that leads to a loss-induced optical
transparency in specially designed pseudo-Hermitian guiding
potentials [287]. These experimental results stimulated further
interest in exploring new classes of PT-synthetic materials
with intriguing and unexpected properties for fundamental
research and novel applications. Nonlinear beam dynamics
and spatial solitons in PT-symmetric potentials were also
investigated theoretically. It was shown that a novel class of 1
and 2D nonlinear self-trapped modes can exist in optical PT-
synthetic lattices [288]. In fact, spatial solitons in PT symmetry
systems have attracted a great deal of attention recently, fueled
by continued interest in spatial solitons, discrete phenomena

and PT-symmetric systems. For example, a number of
theoretical studies have focused on the existence and stability
of nonlinear localized modes and soliton dynamics supported
by the PT-symmetric couplers or lattices under a variety of
settings [289–293].

6. Concluding remarks

The field of optical spatial solitons really began back in the
1970s and reached some maturity in the 1990s, and is still
at the frontier of nonlinear optics and photonics. Although
the formation mechanism and fundamental properties of
spatial solitons under different nonlinearities have been studied
extensively, much remains to be uncovered, especially with
new developments in nonlinear synthetic materials including
photonic bandgap materials, metamaterals, soft condensed
matter and PT-symmetric materials. Judging from the current
level of research activity, we believe that the area of spatial
solitons will continue to flourish for many years to come.
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